Problem 1:

a) \[n = m + r - 2j = 14 + 3 - 2 	imes 9 = -1 \] (0.25)

Counter example: \(F_l \times F = 0 \rightarrow F = 0 \) : not true.

b) Complex truss

External: stable (0.25)
Internal: Stable (0.25)

\[n = m + r - 2j = 8 + 4 \times 2 - 2 \times 8 = 0 \] (0.25)

6 method: \(S' \) should be zero based on zero force method. (0.25)

Consider equilibrium at joint B, this requires \(S = 0 \).
\[\sum M_C = 0 \rightarrow P \times 2 \alpha - F_{HG} \times \alpha = 0 \]

\[\rightarrow F_{HG} = 2P \quad (0.5) \]

\[\sum M_E = 0 \rightarrow F_{CH} \times \ell = 0 \rightarrow F_{CH} = 0 \quad (0.5) \]

\[F_A^y = wL/2, \quad F_D^y = wL/2 \quad (0.5) \]

\[F_A^x = 0. \]

AB & CD: V = 0, M = 0

BC: \[\begin{align*}
V &= wL^2 - wx \\
M &= \frac{wL}{2} \cdot x - \frac{wx^2}{2}
\end{align*} \quad (0.5) \]
shear

\[\frac{wL^2}{2} \]

\[\frac{wL^2}{2} \]

\[L \]

\[L \]

\[P \]

\[F_A = 2P \]

\[M_A = 2Pl \]

\[F_y = -P \]

\[2P \]

\[2P \]

\[-2P \]

\[(0.5) \]

\[(0.25) \]