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Chapter I

Theoretical Classical Mechanics:

Lagrangians and Hamiltonians
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Hamilton‘s Principle and the Lagrangian

Consider a Function 𝐿(𝒒,  𝒒, 𝑡) describing the mechanical system in generalized

coordinates 𝒒 = 𝑞1, 𝑞2, ⋯ , 𝑞𝑁 and their temporal derivatives  𝑞𝑖 =
𝑑𝑞𝑖

𝑑𝑡
then the

integral

is stationary with respect to the coordinates:

(1) 𝑆 =  

𝑡1

𝑡2

𝐿 𝒒,  𝒒, 𝑡 𝑑𝑡

(2)
𝛿𝑆

𝛿𝒒(𝑡)
= 0
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From the variational principle we obtain

This yields

After partial integration we get

(3) 𝛿𝑆 = 𝛿  

𝑡1

𝑡2

𝐿 𝒒,  𝒒, 𝑡 𝑑𝑡 = 0

(4) 𝛿  

𝑡1

𝑡2

𝐿 𝒒,  𝒒, 𝑡 𝑑𝑡 =  

𝑡1

𝑡2
𝜕𝐿

𝜕𝒒
𝛿𝒒 +

𝜕𝐿

𝜕  𝒒
𝛿  𝒒 𝑑𝑡 = 0

(5) 𝛿𝑆 =
𝜕𝐿

𝜕  𝒒
𝛿𝒒|𝑡1

𝑡2 +  

𝑡1

𝑡2
𝜕𝐿

𝜕𝒒
−

𝑑

𝑑𝑡

𝜕𝐿

𝜕  𝒒
𝛿𝒒𝑑𝑡 = 0
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We obtain the Euler-Lagrange equations

(6)
𝑑

𝑑𝑡

𝜕𝐿

𝜕  𝒒
−
𝜕𝐿

𝜕𝒒
= 0
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Conservation Laws

Homogeneity of time yields

or

This means that the energy of a mechanical system is conserved!

(7)
𝑑𝐿

𝑑𝑡
=
𝜕𝐿

𝜕𝒒
 𝒒 +

𝜕𝐿

𝜕  𝒒
 𝒒

(8)
𝑑𝐿

𝑑𝑡
=  𝒒

𝑑

𝑑𝑡

𝜕𝐿

𝜕  𝒒
+
𝜕𝐿

𝜕  𝒒
 𝒒 =

𝑑

𝑑𝑡

𝜕𝐿

𝜕  𝒒
 𝒒

(9)
𝑑

𝑑𝑡

𝜕𝐿

𝜕  𝒒
 𝒒 − 𝐿 = 0
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Homogeneity of space yields (for all centers of mass a)

which holds true for

Hence, in an adiabatic system the total momentum is conserved:

(10) 𝛿𝐿 = 

𝑎

𝜕𝐿

𝜕𝒓𝑎
𝛿𝒓𝑎 = 𝜺 

𝒂

𝜕𝐿

𝜕𝒓𝑎

(11)  

𝒂

𝜕𝐿

𝜕𝒓𝑎
= 0

(12)  

𝑎

𝑑

𝑑𝑡

𝜕𝐿

𝜕  𝒓𝑎
=

𝑑

𝑑𝑡
 

𝑎

𝜕𝐿

𝜕  𝒓𝑎
= 0

(13) 𝒑 = 

𝑎

𝜕𝐿

𝜕  𝒓𝑎
= const.
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Isotropy of space yields (for rotations j)

For velocities, we derive

Isotropy of space means that the Lagrangian does not change when the

system is rotated, hence

With our previously defined momenta this writes as

(14) 𝛿𝒓 = 𝛿𝝋 × 𝒓

(15) 𝛿  𝒓 = 𝛿𝝋 ×  𝒓

(16) 𝛿𝐿 =
𝜕𝐿

𝜕𝒓
𝛿𝒓 +

𝜕𝐿

𝜕  𝒓
𝛿  𝒓 = 0

(17)  𝒑 𝛿𝝋 × 𝒓 + 𝒑 𝛿𝝋 ×  𝒓 = 0
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We can rewrite this as

As this holds true for any arbitrary number dj we can conclude that

The total angular moment is conserved.

(18) 𝛿𝝋 𝒓 ×  𝒑 +  𝒓 × 𝒑 = 𝛿𝝋
𝑑

𝑑𝑡
𝒓 × 𝒑

(19)
𝑑

𝑑𝑡
𝒓 × 𝒑 =

𝑑

𝑑𝑡
𝑴 = 0
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Some fun: A particle facing central force

Consider a particle moving in a central force field, i.e.

with the radial distance r and the distance vector r, with respect to the origin of

the force F. As we know that the angular momentum is conserved, we can

conclude that the particle can only move in a plane. If we are applying polar

coordinates, with the origin of our coordinate system being identical to the

origin of the force, we obtain the Lagrangian

Actually, this not an explicit function of j. Such coordinates are called cyclic

and it holds true for all cyclic coordinates that

(F1) 𝑭 = −
𝜕𝑈

𝜕𝒓
= −

𝑑𝑈

𝑑𝑟

𝒓

𝑟

(F2) 𝐿 =
𝜇

2
 𝑟2 + 𝑟2  𝜑2 − 𝑈(𝑟)

(F3)
𝑑

𝑑𝑡

𝜕𝐿

𝜕  𝑞𝑖
=

𝜕𝐿

𝜕𝑞𝑖
= 0
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In this case, the generalized momentum is identical to the angular momentum,

which is constant

This yields an expression for  𝜑 which can be inserted into F2. This yields the

total energy

From there, we obtain

(F4) 𝑀 = 𝜇𝑟2  𝜑 = const.

(F5) 𝐸 =
𝜇  𝑟2

2
+

𝑀2

2𝜇𝑟2
+ 𝑈(𝑟)

(F6)  𝑟 =
𝑑𝑟

𝑑𝑡
=

2

𝜇
𝐸 − 𝑈(𝑟) −

𝑀2

𝜇2𝑟2
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Next, we take this result and derive

After combination with F4 we obtain

The radial part of the potential yields an effective potential energy

(F7)

𝑑𝑡 =
1

2
𝜇 𝐸 − 𝑈(𝑟) −

𝑀2

𝜇2𝑟2

𝑑𝑟

(F8)
𝜑 =  

𝑀

𝑟2 2𝜇 𝐸 − 𝑈(𝑟) −
𝑀2

𝑟2

𝑑𝑟 + const.

(F9) 𝑈eff = 𝑈 𝑟 +
𝑀2

2𝜇𝑟2
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Some more fun: Kepler’s problem

Let us assume a particle moving within a potential

According to F9 this gives the effective potential

Inserting K1 into F8 and solving the integral yields

(K1) 𝑈 = −
𝛼

𝑟

(K2) 𝑈eff = −
𝛼

𝑟
+

𝑀2

2𝜇𝑟2

(K3) 𝜑 = arccos

𝑀
𝑟 −

𝜇𝛼
𝑀

2𝜇𝐸 +
𝜇2𝛼2

𝑀2
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We define

and

and obtain the equation

This is the equation of an ellipse with parameter p and eccentricity e.

(K4) 𝑝 =
𝑀2

𝜇𝛼

(K5) 𝑒 = 1 +
2𝐸𝑀2

𝜇𝛼2

(K6)
𝑝

𝑟
= 1 + 𝑒 cos𝜑
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The semi-major axis is then

and the semi-minor axis is

Note that a only depends on the total energy, whereas b also depends on the

angular momentum of the particle.

(K7) 𝑎 =
𝑝

1 − 𝑒2
=

𝛼

2 𝐸

(K8) 𝑏 =
𝑝

1 − 𝑒2
=

𝑀

2𝜇 𝐸
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Hamiltonian Mechanics

Consider

With the definition of momentum we can rewrite this to

As

equation 21 can be written as

(20) 𝑑𝐿 =
𝜕𝐿

𝜕𝒒
𝑑𝒒 +

𝜕𝐿

𝜕  𝒒
𝑑  𝒒

(21) 𝑑𝐿 =  𝒑𝑑𝒒 + 𝒑𝑑  𝒒

(22) 𝒑𝑑   𝒒 = 𝑑 𝒑  𝒒 −  𝒒𝑑𝒑

(23) 𝑑 𝒑  𝒒 − 𝐿 = −  𝒑𝑑𝒒 +  𝒒𝑑𝒑
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The right side of equation 23 is just the expression of E, which we will consider

the Hamiltonian H. hence, we can always transform our Lagrangian into a

Hamiltonian:

From equation (23) we can easily derive the equations

and

(24) 𝐻 𝒑, 𝒒, 𝑡 = 𝒑  𝒒 − 𝐿(  𝒒, 𝒒, 𝑡)

(25)  𝑞𝑖 =
𝜕𝐻

𝜕𝑝𝑖

(26)  𝑝𝑖 = −
𝜕𝐻

𝜕𝑞𝑖
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If we consider the addition of a parameter l we obtain a new Lagrangian

With the definition of the Hamiltonian (eqs. 23 and 24) we can easily obtain the

effect of this parameter on the Hamiltonian:

Combining both equations we find

This holds true for the parameter being time, too. Thus, if the Lagrangian yields

conservation of energy, so does the Hamiltonian.

(27) 𝑑𝐿 =  𝒑𝑑𝒒 + 𝒑𝑑  𝒒 +
𝜕𝐿

𝜕𝜆
𝑑𝜆

(28) 𝑑𝐻 = −  𝒑𝑑𝒒 + 𝒑𝑑  𝒒 −
𝜕𝐿

𝜕𝜆
𝑑𝜆

(29)
𝜕𝐻

𝜕𝜆
𝒑,𝒒

= −
𝜕𝐿

𝜕𝜆
 𝒒,𝒒


